1824 J. Am. Chem. So2000,122,1824-1825

Organolanthanide-Catalyzed Intramolecular
Hydrophosphination/Cyclization of Phosphinoalkenes

2
and Phosphinoalkynes + P

% bn—CH(T MS),
}x CHy(TMS),

Michael R. Douglass and Tobin J. Marks*

Department of Chemistry
Northwestern Uniersity

Evanston, lllinois 60208-3113
Receied October 11, 1999
Although the catalytic addition of-PH bonds to G-C muiltiple Hzp/\/\/
bonds is a highly desirable transformation, it is generally difficult = step i stepi

to accomplish with transition metal complexXe$n contrast, A~ 17 kealmor (akenes) A e
organolanthanide-mediated intramolecular hydroamination/cy-

clization of aminoalkenesaminoalkynes,and aminoallenésas
been shown to have significant selectivity and generality, raising
the intriguing question of whether the corresponding hydrophos-
phination processes might also be feasible. Thermodynamic
considerations for a prospective organolanthanide-catalyzed hy-

Figure 1. Proposed catalytlc cycle for organolanthanide-mediated
hydrophosphination/cyclization of phosphinoalkenes and phosphi-
noalkynes.

drophosphination process (Figure 1) predict insertion (Stép

be exothermic £—33 kcal/mol for alkynes) or approximately
thermoneutral (alkenesy+2 kcal/mol) and subsequent Ln-C
protonolysis (stefi) to be exothermic{—7 kcal/mol for alkynes;
—17 kcal/mol for alkenes}® The resulting phosphorus hetero-
cycles belong to a class of interest as alkaloid mifmasd as
ligand building blocks in asymmetric cataly8islerein we report
the catalytic intramolecular hydrophosphination/cyclization of

Although the synthesis of primary and secondary phosphines
has been explored, few general routes are avaifdblEhe
synthesis of secondary phenyl alkenyl phosphines (eq 1) can be
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phosphinoalkenes and phosphinoalkynes using organolanthanidex=oms,R' =H,R? = Me

precatalysts of the type GhnCH(TMS), (Cp' = 1°>-CsMes; Ln

= La, Sm, Y; TMS = SiMe;) and MeSi(Me;Cs)(BuN)-
SmMNTMS, and observations on factors affecting the scope,
diastereoselectivity, and kinetics of these transformations-vis-a
vis the nitrogen analoguég®
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accomplished by reaction of KPPwith the desired alkenyl
fragment bearing an appropriate leaving group, followed by Na/
NHz(l) or Li/THF'? cleavage of a single phenyl substituent.
Protolytic workup yields the desired secondary phospkhine.
Primary phosphines were synthesized via dicholoroalane reduction
of phosphonate precursors (eq!2 turn prepared via Arbuzov
reaction of P(OEg) with the corresponding alkenyl or alkynyl
halide!3%5
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Anaerobic cyclization of primary and secondary alkynyl and
alkenyl phosphines mediated by ‘@mCH(TMS), precatalysts
(Cp = 1>-MesCs; Ln = La, Sm, Y; TMS= MesSi) is general in
scope (Table 132 Secondary phosphinoalkenes undergo cycliza-
tion to yield reasonably stable tertiary phospholanes (entrieg,2
albeit somewhat sluggishly, presumably due to the phenyl group
bulk. A notable competing side reactionriencatalyticintramo-
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Table 1. Results for the Organolanthanide-Catalyzed responding roughly to dimers; however, NMR data indicate
Hydrophosphination/Cyclization of Phosphinoalkenes and several products that could not be completely characterized.
Phosphinoalkynés Phosphinel4 is inferred but never observed by NMR; products
" with molecular weights of dimers are observed, and thus
entry substrate product Ny, b7 (°C)
presumably the unstable secondary phospholane formed undergoes
H rapid conversion to a dimer.
1, Hp N R 2.3(22)° In principle, four stereoisomers can result from alkenyl
1 (J/z phosphine cyclizations, because inversion at phosphorus is%low.
Ph For 1 — 2, the 3'P NMR exhibits two product resonances in a
2 P“;PW 1) 0.25 (40)° ~2:1 ratio, while for3 — 4, the product exhibits two resonances
H N 4 in varying ratios depending on the catalyst. Transformati®ns
— 6% and 7 — 8 exhibit two product3!P signals of equal
oh J\/\/ Ph magnitude regardless of the catalyst. Compldxspectra for6
3 P Z ~0.05 (60)° are consistent with mixtures @is-(R,9 andtrans(R,Ror S,9

|
P.
v: methyl dispositions.
Kinetic studies of the hydrophosphination/cyclization ¥y
. _ Ph NMR (integration of olefinic or P-H resonances vs that of GH
4 PO P 0.31 (40)° TMS, formed in catalyst initiation; 36150:1 substrate:catalyst)
ﬁ 8 reveal linear dependence of [substrate] on reaction time, consistent
with zero-order rate dependence on [substrate]. The data thus
|

— 3 12.4 (22)° implicate the same turnover-limiting catalytic step observed for
5 HP™ Q/\ph 2.0 (40)° organolanthanide-mediated hydroaminafichthat is, insertion
9 10 0.08 (40)° of the carbor-carbon unsaturation into the krineteroatom bond.
12.9 (22)° However, for analogous substrates and catalysts, hydrophosphi-
H nation is~5—10 times slower than the corresponding hydroami-
6. HP A~ —="Fh P ~pn 36 (22)° nation proces$? Another deviation from the hydroamination
" OA pathway is the protolytic initiating step of the catalytic cycle. As
12 H
judged by NMR, cleavage of the BCH(TMS), bond by
H T . : g
) o — v i phosphine is not immediate upon mixing precatalyst and substrate.

Q/\Tms 011 (40" The corresponding organolanthanide hydri¢fdspwever, effect
14 immediate catalytic initiation (presumably evolving)8 with
- - - appropriate color changes. Transformat®r~ 10 exhibits the
* Turnover frequencies measured igDewith 2-3 mg, precatalyst.  pighest turnover frequencies, with decliningvdlues on proceed-

Conversion is>95% by'H and*P NMR spectroscopy. CpsLaCH- ; . . L X
(TMS), as precataI;sﬁyC[fZSmCH(TMS) ag precatalsgﬂ CUEZYCH- ing from the largest eight-coordinate lanthanide ionic radius La

(TMS), as precatalyst Me,Si(Me,Cs)(BUN)SmMNTMS as precatalyst. (1160 A) to smaller Sfi (1.079 A) and ¥ (1.019 R)2
analogous to the trend for aminoalkedemd opposite of that
lecular 1,2 P-H additiori® to afford a six-membered phospho- for aminoalkynes. Opening the lanthanide coordination sphere

rinane (eq 3). Control experiments reveal that this pathway can (with constant metal) using the Msi(Me,Cs)('BuN) ancillary
ligancP? leads to enhanced rates, from 2 lat 40°C to 13 hrt at

13

R ) R 22 °C (entry 4).

| R Cp',LaCH(TMS |

N H;pW CPatatHTM®: & ® These results demonstrate that lanthanocenes are competent
R=Ph,H catalysts for the hydrophosphination/cyclization of primary and

secondary alkenyl and alkynyl phosphines and that both parallels
be significantly suppressed by carrying out cyclizations at and distinct differences are observed versus the corresponding
relatively low temperatures with exclusion of light. Final product hydroamination processes. Further explorations of the scope,
mixtures for entries +4 contain exclusively the desired phos- selectivity, and mechanism of catalytic hydrophosphination are

pholane, contaminated with5—20% of the phosphorinarié. in progress.
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